Molecular modeling of the major adduct of (+)-anti-B[a]PDE (N2-dG) in the eight conformations and the five DNA sequences most relevant to base substitution mutagenesis.
نویسندگان
چکیده
The potent mutagen/carcinogen 7R,8S-dihydroxy-9S, 10R-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(+)-anti-B[a]PDE], which is the activated form of benzo[a]pyrene (B[a]P), is able to induce different kinds of mutations (G-->T, G-->A, etc.). One hypothesis for this is that different mutations are induced depending upon the conformation of its major adduct ([+ta]-B[a]P-N2-dG) when bypassed during DNA replication. Based on molecular modeling, there appear to be at least 16 potential conformations that the major adduct [+ta]-B[a]P-N2-dG can adopt in dsDNA. Regarding base substitution mutagenesis, eight conformations are most likely to be relevant. In two conformations the dG moiety of the adduct is base paired with its complementary dC and the B[a]P moiety is in the minor groove. In two others the dG moiety of the adduct is in the Hoogsteen orientation and the B[a]P moiety is in the major groove. There are four base displaced structures in which the B[a]P moiety of the adduct is stacked with the surrounding base pairs, two with dG in the major groove and two with dG in the minor groove. Using a simulated annealing protocol, these eight conformations were evaluated in five different DNA sequence contexts (5'-TGC-3', 5'-CGT-3', 5'-AGA-3', 5'-CGG-3' and 5'-GGG-3'); the latter were chosen because they may be particularly revealing about mutagenic mechanism based on studies with [+ta]-B[a]P-N2-dG and (+)-anti-B[a]PDE. For each conformation and each sequence context, 25 simulated annealing runs were conducted by systematically varying several parameters (such as the initial annealing temperature) based on a protocol established recently. The goal of this work was to exclude conformations that are clearly inferior. Three conformations are virtually always high in energy, including the two Hoogsteen oriented species and one of the base displaced species with dG in the major groove. Remarkably, the remaining five conformations are often quite close in energy and are deemed most likely to be relevant to mutagenesis (see accompanying paper).
منابع مشابه
Molecular modeling of the conformational complexity of (+)-anti-B[a]PDE-adducted DNA using simulated annealing.
Benzo[a]pyrene (B[a]P), a potent mutagen/carcinogen, reacts with DNA following metabolism to its corresponding (+)-anti-7,8-diol-9,10-epoxide [(+)-anti-B[a]PDE], giving a major adduct (+)-trans-anti-B[a]P-N2-dG. Evidence suggests that this adduct is responsible for most of the different kinds of mutations (e.g. G-->T, G-->A, etc.) induced by (+)-anti-B[a]PDE, raising the question of how can a s...
متن کاملPolη, Polζ and Rev1 together are required for G to T transversion mutations induced by the (+)- and (−)-trans-anti-BPDE-N2-dG DNA adducts in yeast cells
Benzo[a]pyrene is an important environmental mutagen and carcinogen. Its metabolism in cells yields the mutagenic, key ultimate carcinogen 7R,8S,9S,10R-anti-benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide, (+)-anti-BPDE, which reacts via its 10-position with N2-dG in DNA to form the adduct (+)-trans-anti-BPDE-N2-dG. To gain molecular insights into BPDE-induced mutagenesis, we examined in vivo trans...
متن کاملNuclear Magnetic Resonance Studies of an N2-Guanine Adduct Derived from the Tumorigen Dibenzo[a,l]pyrene in DNA: Impact of Adduct Stereochemistry, Size, and Local DNA Sequence on Solution Conformations
The dimensions and arrangements of aromatic rings (topology) in adducts derived from the reactions of polycyclic aromatic hydrocarbon (PAH) diol epoxide metabolites with DNA influence the distortions and stabilities of double-stranded DNA, and hence their recognition and processing by the human nucleotide excision repair (NER) system. Dibenzo[a,l]pyrene (DB[a,l]P) is a highly tumorigenic six-ri...
متن کاملMolecular Modeling of indeno [1,2-b] quinoline-9,11-diones as cytotoxic agents
Deoxyribonucleic acid (DNA) is an important molecular target for anti-cancer agents due to its involvement in gene expression and protein synthesis which are fundamental steps in cell division and growth. A number of antineoplastic agents interfere with DNA and hence disturb the cell cycle. Compounds including planar aromatic rings are privileged scaffolds in binding to the DNA. This characteri...
متن کاملMolecular Modeling of indeno [1,2-b] quinoline-9,11-diones as cytotoxic agents
Deoxyribonucleic acid (DNA) is an important molecular target for anti-cancer agents due to its involvement in gene expression and protein synthesis which are fundamental steps in cell division and growth. A number of antineoplastic agents interfere with DNA and hence disturb the cell cycle. Compounds including planar aromatic rings are privileged scaffolds in binding to the DNA. This characteri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Carcinogenesis
دوره 20 1 شماره
صفحات -
تاریخ انتشار 1999